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Abstract—Computer networks are nowadays subject to an
increasing number of attacks. Intrusion Detection Systems
(IDS) are designed to protect them by identifying malicious
behaviours or improper uses. Since the scope is different in
each case (register already-known menaces to later recognise
them or model legitimate uses to trigger when a variation is
detected), IDS have failed so far to respond against both kind
of attacks. Lately, Bayesian networks (BN) have provided an
innovative solution to fill this gap by integrating both domains
within a common knowledge representation model. Still, the
huge computational effort that has to be invested in designing
and training the BN with such knowledge model makes them
not feasible and not practical for real-world scenarios. Against
this background, we propose the use of expert knowledge to
enhance and optimise the design of the Bayesian network,
shortening subsequently the training process. This expert
knowledge is represented as a set of hypotheses that must be
verified to justify their utility. In this way, we have tested our
approach with several samples of data showing that all the
hypotheses assumed were true and, therefore, that the proposed
methodology to trim down the design and training processes
yields an optimal Bayesian network for Intrusion Detection.

I. INTRODUCTION

According to the estimations of the Internet System
Consortium, nowadays more than 489 million computers
are connected to the biggest network in the world (Inter-
net System Consortium, 2009). Being part of such a vast
community brings amazing possibilities but also worrying
dangers. Overwhelmed by a record-braking growth of the
52% in the last decade, traditional passive measures for
isolation and access control are simply inadequate to dam
the increasing flood of digital attacks and intrusion attempts.

In this way, Intrusion Detection Systems (IDS) have
become a substantial part of computer security since they
help to protect from the wave of intrusion attempts. Based
on their scope, IDS can be divided into misuse and anomaly-
based detection. Misuse detection is chronologically the first
approach and is based on a well-defined corpus of malicious
behaviours in order to find such patterns in the supervised
system. Anomaly Detection, on the contrary, focuses on not
yet documented menaces since it models legitimate usage to
obtain afterwards a certainty measure of potential deviations
from that normal profile. Therefore, misuse detection has
proved to be a very good at finding well-known attacks
and anomaly detection at alerting against unknown ones.

Unfortunately, they fail when applied to the other’s natural
role [1].

In this way, in previous works we have presented the
first unified misuse and anomaly prevention system based
on Bayesian networks to fully analyse network packets. It is
able to simultaneously offer efficient response against both
well-known and zero-day attacks. In order to ease the way
to this goal, our system was conceived and deployed in a
modular way that allowed decomposing of the problem into
several smaller units. Still, the design and training process of
the Bayesian network (BN) demanded huge computational
efforts that prevented it from being applied in the real world.
In order to face this constrain, the use of expert knowledge
is proposed. Expert knowledge has been previously used in
data mining classifiers [2], for normalizing and binning gene
expression data in BN [3] or for generalized partition testing
via Bayes linear methods [4].

Against this background, we advance the state of the art
in two main ways. First, we present, for the first time, a
methodology to enhance the design of the BN (and, thus,
shorten the training process) by using expert knowledge.
Second, we detail a knowledge representation model appli-
cable to this problem domain based on independent cause-
consequence hypotheses.

The remainder of the paper is structured as follows.
Section II describes the general architecture of the system
and presents the potentials and limitations of the use of
Bayesian networks for Intrusion Detection Systems. Section
III introduces the knowledge representation model, including
the proposed hypotheses. Section IV describes the exper-
iments carried out to verify the hypotheses and discusses
their results. And, finally, section V concludes and outlines
the avenues of future work.

II. POTENTIAL AND LIMITATIONS OF THE SYSTEM
ARCHITECTURE

Bayesian networks are probabilistic models for multi-
variate analysis. Formally, they are directed acyclic graphs
associated to a probability distribution function [5]. Nodes in
the graph represent variables (any kind, be it a premise or a
conclusion), and the arcs, conditional dependencies between
such variables. Further, the probability function illustrates



the strength of these relationships (i.e. arcs or edges) in the
graph.

According to our needs, the most important ability of a
BN is its capability to infer the probability with which a
certain hypothesis becomes true out of the values that the
rest of variables forming the BN take. In this way, we have
divided the network traffic according to its type (TCP-IP,
UDP-IP and ICMP-IP) and created three Bayesian networks
(experts) in charge of analysing their respective packet
headers (which is an strategy already proven successful
in this area [6]). Moreover, in order to cover all possible
kinds of menaces, we also have to take into account the
payload (i.e. body) of the packet and the potential temporal
dependencies between packets. Therefore, we have added
two further experts, the protocol payload expert and the
connection tracking expert, respectively. The division in
temporal steps and in different traffic types, allow us to
decrease the computational requirements of the BN. Section
III-B describes this process in greater detail.

In each case, the Bayesian network is composed of several
variables depending on the protocol and the expert; the value
to be induced is always the probability that the analysed
packet is part of an attack. See [1] for a more accurate
description of the Bayesian experts.

Bayesian networks generally need two learning steps to be
ready to infer results. The first one is the structural learning
process (detailed in section III-D) that obtains the probability
distribution table associated to each variable. The second one
is the parametric learning process (detailed in section III-H)
that refines the initial graph. Finally, the system uses a Naı̈ve
Bayesian network to unify the different experts providing an
excellent balance between knowledge representation capac-
ity and performance. It assumes the existence of conditional
independence hypotheses within every possible cause and
the standing of dependency edges between these causes and
the effect or class applicable to this problem domain. These
hypotheses are the representation of the experts knowledge
that tunes the Bayesian network design and training, creating
the optimal network. Section III-C presents the hypotheses
for optimal BN design, reducing the computational needs of
the system, for efficient intrusion detection.

The fact that the system is built upon several Bayesian net-
works implies a huge learning cost in terms of computational
requirements, both in processing capacity and available
memory. In this way, table I shows the estimated time that
would take to perform the structural learning process for the
data set used in the experiment. Each fragment of the data
is an outfit consisting of 10.000 network packets requiring 7
structural learning processes, one for each significance level.
The time of accomplishment is estimated from the initial
experiments, performed in an Intel Pentium IV with 512
Megabytes of main memory. Each structural learning process
for each fragment of data requires an average of three hours
to complete. With this drawback in mind, we have followed

a conducted-learning approach thanks to the adoption of
expert knowledge. This expert knowledge is represented by
the hypothesis of conditional dependency or independence
between BN-s and is our proposed method to face the
computational requirements of the learning processes.

Table I
PLANNING OF THE STRUCTURAL LEARNING PROCESS

Set of Packets Fragments Learning Estimated
Data Processes Time

Complet 843.806 85 595 1.785 hevidence set
TCP-IP 837.058 84 588 1.764 hevidence set
UDP-IP 5.197 1 7 21 hevidence set
ICMP-IP 1.543 1 7 21 hevidence set

Total 1.687.604 171 1.197 3.591 h

The expert knowledge can give a certain value to the
edges of a Bayesian network [7]. This is the least costly
procedure since at the time of performing experiments an
expert is present and no extra cost is needed to obtain
further knowledge. We use expert knowledge to reduce the
cost of obtaining knowledge for the representation model.
This expert knowledge is represented as the hypotheses
detailed in section III-C. We understand expert knowledge
as those characteristics, skills and knowledge of a person,
which distinguish experts from novices and less experienced
people.

Taking all the above into account, these hypotheses have
direct influence on the complexity of the Bayesian networks
in the structural learning process and in the inference of
the results. In this way, the reduction of the complexity in
the Bayesian network implies a lower expressive capacity.
Nevertheless, these reductions are curried out according to
expert knowledge and hence, the impact in the knowledge
representation expressiveness is worthless as we will show.

III. KNOWLEDGE REPRESENTATION MODEL

Keeping the system described in section II in mind, we
have designed a knowledge representation model in order to
face the limitations of the system architecture and develop its
potential. This section is devoted to detail the whole process
of the structural learning process and presents the expert
knowledge applied to IDSs.

A. Obtaining the sample data

The step, consists on obtaining the evidential sample set of
data. In order to get good results, the quality of the network
traffic is crucial. It is represented in a set of data that is the
input to the module of the structural learning and the result
of this process is directly linked to the input. Hence, the
data set is obtained from a real background as accomplished
in other methodologies [8] [9]. More accurately, the data



set was fed with a simulation of network traffic comprising
more than 700.000 network packets that were sniffed during
a one-hour capture from a University network.

B. Progressive incorporation of temporal steps to the dy-
namic Bayesian network

Each time a new temporal step is added to the Bayesian
network the computational requirements increase notably
because the complexity of the network increases [10] [11]
[12]. To avoid these computational requirements, we use
an iterative methodology. This methodology allows to pro-
gressively add temporal steps into the Dynamic Bayesian
networks.

Dynamic Bayesian networks allow us to represent the
temporal magnitudes as well as to model conditional de-
pendencies and independences of the events that took place
in different times and infer conclusions by using this model
[13] [10] [11] [12].

Each temporal magnitude is represented in a temporal
step, increasing the capacity of the Bayesian network to
remember the influence of each registered event on the past
with events that took place later on. This features enables the
projection of this influence into the future. The use of such
temporal steps in our model allows us to follow sequential
network events [14].

In the present study, the initial model approximation to
the knowledge representation is based on only one temporal
step. Later on, once the required experiments to get the
initial approximation are done, more temporal steps will be
incorporated.

C. Establishing the hypothesis of dependence and indepen-
dence

At this point we can already add the expert knowledge.
Due to the fact that the structural learning methods are
able to infer by themselves the relations of dependence and
independence of the structure, expert knowledge can refine
the resulting model and, hence, optimise the exploitation of
the Bayesian network [15] [16].

As mentioned in section II, we use hypothesis of depen-
dence and independence to refine our knowledge represen-
tation model. In particular, the hypotheses are based on the
specific issues of four network protocols (IP, ICMP, TCP
and UDP). The expert knowledge is based on the following
six hypotheses:
• Hypothesis 1: Dependence between TCP and IP. The

set of the detection parameters of the TCP protocol is
dependent of the set of the detection parameters of the
IP, and vice versa.

• Hypothesis 2: Dependence between UDP and IP. The
set of the detection parameters of the UDP protocol is
dependent of the set of the detection parameters of the
IP, and vice versa.

• Hypothesis 3: Dependence between ICMP and IP.
The set of the detection parameters of the ICMP proto-
col is dependent of the set of the detection parameters
of the IP, and vice versa.

• Hypothesis 4: Independence between TCP and UDP.
The set of the detection parameters of the TCP protocol
is dependent of the set of the detection parameters of
the UDP, and vice versa.

• Hypothesis 5: Independence between TCP and
ICMP. The set of the detection parameters of the TCP
protocol is independent of the set of the detection
parameters of the ICMP, and vice versa.

• Hypothesis 6: Independence between UDP and
ICMP. The set of the detection parameters of the UDP
protocol is independent of the set of the detection
parameters of the ICMP, and vice versa.

These hypotheses are supported by the respective set
of Request For Comments (RFC) of each protocol. An
empirical demonstration of them is done demonstrating that
the knowledge representation model generated from them
can be successfully used in the reasoning engine.

Moreover, the heterogeneity of the detection parameters
headers (information used by the protocols), and data (in-
formation used by the users) themselves implies a different
formalization for each case. The analysis model is static
(based on normal Bayesian networks) in the case of the
head parameters and dynamic (based on Dynamic Bayesian
networks) in the case of data parameters. The first group
forms an information entity and it is, therefore, susceptible
of being used directly in the process of analysis. On the
other hand, the second group represents a variable flow of
information entities in both lexical and a syntactic levels
that requires a specific analysis. Considering all this, another
hypothesis is pointed out:
• Hypothesis 7: Independence between head and data

fields. The set of detection parameters corresponding to
the head fields of IP, ICMP, TCP and UDP protocols is
independent from the data fields of the corresponding
protocols, and vice versa.

Finally, there is an additional aspect to consider. Since
for this experiment only one time step is considered, it is
not possible to include the second evidence required by the
dynamic model. Please note that if more temporal steps are
added this restriction disappears.
• Hypothesis 8: Independence between static and

dynamic parameters. In the case of one temporal
step Dynamic Bayesian networks, the set of detection
parameters used in the static analysis methods are
independent from those used in the dynamic analysis
methods, and vice versa.

The specification of the previous hypotheses of depen-
dence and independence defines separated working areas, in
which different analysis methods will be applied depending



on the type of the detection parameter.
On one hand, we have the head parameters of all the

protocols that can be treated in a homogeneous way. These
cases can be introduced straightforward into the structural
learning process. On the other hand, each protocol data
has its own properties and therefore has to be resolved in
an independent way. In the case of dynamic parameters,
multiple evidences are required, and hence, they will have
an independent treatment too.

D. The structural learning process

The previous step has defined the different fields of
actuation based on the given hypotheses. Now, it is time
to plan how the sample data set will be introduced in
the structural learning process. This step will sort out the
structural learning process for the different learning needs:
• Planning the process of structural learning for the

protocol head parameters
• Planning the process of structural learning for the

protocol data parameters
• Planning the process of structural learning for dynamic

parameters
As it was outlined before, structural learning allows the

modelling, in a completely automated way, of the set of
dependence and independence relationships that can reside
among the different detection parameters. Thus, it is also
possible to proceed with further stages to be able to inference
conclusions.

Nevertheless, for situations in which the volume of evi-
dences is very big and the detection parameters also show
large numbers of different possible states, the learning
PC-Algorithm (and also other similar alternative methods)
presents very high computational requirements [17]. Be-
sides, depending on the inner complexity of the set of
relationships, those requirements can grow even more; that
complexity depends completely on the reality of data and
therefore is so far unpredictable.

Thus, the high demands on memory and computer power
of this method may restrict its application on limited-power
computing platforms.

Against this problem, we have developed a specific
methodology for horizontal splitting of the traffic sample
and, consequently, of the subsequent structural learning
process. This splitting not only allows the achievement of the
desired results, but also enriches the research methodology,
allowing the researchers to carry their work to the limit of
the computational power available.

In the case of our experiment, only the head parameters
of the different protocols (TCP, UDP, ICMP and IP) can
be fractionated during the structural learning process as
pointed in section III-C. Furthermore, in order to validate
the hypothesis of dependence and independence, the whole
sample data set is used in an additional structural learning
process.

Please note that structural learning methods commonly
use a significance parameter. That helps to define, in a
flexible manner, the strength with which a relationship
is definitely considered of dependence. In this way, the
significance parameter can be used to make the concept of
equality needed for the independence tests that are imple-
mented inside the learning algorithms relative (in particular,
inside the PC Algorithm). On one hand, a high significance
value increments the number of connections in the Bayesian
model, and the degree of representativeness, implies larger
requirements in terms of main memory and computational
power that may produce over-fitting. On the other hand,
a low significance value generally results into a sparse
Bayesian network, with lower requirements, but also much
lower semantic power.

Keeping in mind the objective of finding a trade-off
between representative capacity and system performance, we
have expanded the structural learning process in multiple
significance levels. More accurately, it consists of seven
different levels and each of them will have the sample data
set as an input.

Once the planning of the learning process has been done,
the computational work itself can start. Considering the size
of the sample data and the several significance levels, the
structural learning process has to be applied several times
generating a large set of partial Bayesian networks. These
networks will be unified in a later step.

Besides, the presented hypotheses suggest the introduction
of four sets of data from the sample data. On one hand,
three sets of data corresponding to the head parameters of
the protocols (TCP and IP, UDP and IP, ICMP and IP); and,
on the other hand, a fourth set containing the whole evidence
sample data. Table I summarizes the size of the different sets
of data used in the experiment and the resulting fragments,
the number of structural learning processes that took place,
and the estimated time required for each analysis.

As it can be seen, the learning PC-Algorithm yields a set
of 1197 partial BN, which have to be unified as described
in the following sections. The resulting BN will represent
the real set of relations of dependence and independence
between the different detection parameters.

E. Unifying and adapting the partial results

In order to achieve the unification of the partial BNs, we
have defined a statistical metrics from the partial Bayesian
networks. This metric will consider the frequency of repeti-
tion in the partial structures in the corresponding significance
levels of each relation between two different detection
parameters. Table II shows a part of this statistics metrics.

The next step is to obtain one unique BN structure for
each level in which each link is pondered depending on the
number of times that appears in the partial structures. Once
the unification of the different significance levels is done



Table II
STATISTICS OF LINKS FREQUENCY BETWEEN VARIABLES IN THE

WHOLE EVIDENCE SET

child attack icmp icmp icmp ...\parent -h-chk -h-code -h-type
attack - 4,16 - - ...

icmp-h-chk 4,16 - - - ...
icmp-h-code 8,33 16,66 - - ...
icmp-h-type - 58,30 8,33 - ...

... ... ... ... ... ...

for each set of data, it is possible to proceed with the final
unification.

This unification is achieved by finding the average value
of the different percent’s for each link between variables;
hence, we obtain an unique and pondered structure of the
Bayesian network. Furthermore, this unification provides a
balance between representative capacity and performance.

On the other hand, this process introduces a negative
effect into the knowledge representation model due to the
fractionated learning process. During the unification process
of the partial Bayesian networks, direct loops may appear,
contravening the definition of Bayesian networks [18].

In order to avoid this phenomenon, once the unification
process is performed, we require an additional model adapt-
ing process. The average value previously obtained will be
used to eliminate the weakest links, and hence, eliminate the
direct loops, if they exist.

The final result will be one Bayesian network for each
set of data planned in the structural learning process. The
Bayesian networks correspond to the evidences from UDP-
IP, TCP-IP and ICMP-IP. At this point, the networks are
ready for exploitation doing either parametric learning or
inference of conclusions [19] [20] [21] and adaptation [22]
[23].

F. Verifying the hypotheses of dependence and independence

Once the Bayesian network models that will be used by
the reasoning engine are obtained, it is compulsory to verify
the proposed hypotheses of dependence and independence.
It is possible to prove the validity of the hypotheses by using
the result sets of the structural learning process. The high
complexity of this phase suggests a further description that
is accomplished in section IV.

The final knowledge representation model can be built
straight forward from the obtained Bayesian networks, since
the results confirm the hypothesis of dependence and inde-
pendence

G. Structural definition of the representation model of
knowledge

The final knowledge representation model consists in:
• A Bayesian network representing the TCP-IP refined

evidence
• A Bayesian network representing the UDP-IP evidence

• A Bayesian network representing the ICMP-IP evi-
dence

• A Dynamic Bayesian network representing the analysis
of the protocol parameters at a lexical level

• A Dynamic Bayesian network representing the analysis
of the data parameters at a syntactical level

• A Bayesian network representing the ICMP-IP evi-
dence

• A Dynamic Bayesian network representing the analysis
of the dynamic parameters

Each knowledge model is isolated according to the prob-
lem hypotheses. This model of independence implies that the
inference process will produce several conclusions. In order
to fight over this issue, we need an additional component
that joins all the conclusions.

The component used to gather up all the partial conclu-
sions into a unique conclusion is a Naı̈ve Bayesian network,
which is an standard solution [1] for this kind of situations.
This model points out an excellent relation between repre-
sentation capacity and performance in evidence classification
tasks [15] [24] [11].

H. The parametric learning process

The knowledge model fixed so far is qualitative. There-
fore, the following step is to apply parametric learning
in order to obtain the quantitative model representing the
strength of the collection of previously learned relationships
before the exploitation phase began. Specifically, we have
implemented a maximum likelihood estimate [10] to achieve
this goal.

This method completes the Bayesian model obtained in
the previous step by defining the quantitative description
of the set of edges between parameters. Namely, structural
learning finds the structure of probability distribution func-
tions between detection parameters and parametric learning
fills this structure with proper conditional probability values
[1].

IV. EVALUATION AND RESULTS

In order to assess the validity of the work hypotheses
described in section III-C, we have performed different sorts
of experiments. We start our experiments from the knowl-
edge representation model made up of different Bayesian
networks that form the reasoning engine. From then on,
and considering the hypotheses of dependence and inde-
pendence, we analyse the obtained results of the structural
learning process. As the results confirm the hypotheses of
dependence and independence, the RFC specifications of
each protocol are ratified. Finally, we build a knowledge
representation model based on the different Bayesian net-
works.

Taking that modus operandi into account, and with the
objective of minimising the possible appearance of noise
in the results that could affect the final conclusions about



the hypotheses, we have set a threshold value. Above this
threshold value a link between two variables will not be
representative. According to our methodology, two protocols
will be independent if and only if there are no representative
relations between the set of parameters of either of them. The
hypotheses of dependence and independence are proved to
be true:
• Hypothesis 1: Dependence between TCP and IP.

Table III show the relations between the parameters of
TCP and IP, verifying that there are many significant
links between the corresponding detection parameters
of each protocol, in both ways. Therefore, there are
variables of the TCP protocol Bayesian network that
depend on variables of the IP protocol, and vice versa.
Hence, the hypothesis of dependence between TCP and
IP is confirmed.

• Hypothesis 2: Dependence between UDP and IP.
Equally, as table IV show the data of the experiment
points out the relation between the head parameters of
the UDP and IP protocols. There are enough significant
links between the detection parameters of both proto-
cols, in both ways. Therefore, there are variables of the
UDP protocol in the Bayesian network that depend on
variables of the IP protocol, and vice versa. Hence, the
hypothesis of dependence between UDP and IP is also
confirmed.

Table IV
FREQUENCY OF LINKS APPEARANCE IN THE BAYESIAN NETWORK FOR

RELATIONS OF DEPENDENCE OF UDP PARAMETERS OVER IP
PARAMETERS

child\parent udp-h-chk udp-h-l udp-h-dport udp-h-sport
ip-h-dst - - 1,61 -
ip-h-src 9,65 1,02 3,88 1,79

ip-h-proto - - 2,04 3,65
ip-h-tll - - - -
ip-h-df - - 1,02 -
ip-h-id - - - -
ip-h-tl - - - -

ip-h-tos - - - -
ip-h-hl - - - -

• Hypothesis 3: Dependence between ICMP and IP.
Table V show the case of ICMP and IP protocols,
the data of the experiment points out the relation
between the head parameters of both protocols. There
are enough significant links between the detection pa-
rameters, in both ways. Therefore, there are variables of
the ICMP protocol in the Bayesian network that depend
on variables of the IP protocol, and vice versa. Hence,
the hypothesis of dependence between ICMP and IP is
confirmed similarly.

• Hypothesis 4: Independence between TCP and UDP.
Table VI show the hypothesis of independence between
TCP and UDP, the data of the experiment points out the

Table V
FREQUENCY OF LINKS APPEARANCE IN THE BAYESIAN NETWORK FOR

RELATIONS OF DEPENDENCE OF ICMP PARAMETERS OVER IP
PARAMETERS

child\parent icmp-hchk icmp-hcode icmp-htype
ip-h-dst - - -
ip-h-src - - -

ip-h-proto - 2,90 -
ip-h-tll - - -
ip-h-df - - -
ip-h-id - - -
ip-h-tl - - -

ip-h-tos - 8,94 -
ip-h-hl - - -

independence between the detection parameters of both
protocols, in none of both ways. There are not enough
significant links between the detection parameters, in
none of both ways. Therefore, there are not variables
of the TCP protocol that depend on the variables of the
UDP protocol, and vice versa. Hence, the hypothesis of
independence between TCP and UDP is also verified.

Table VI
FREQUENCY OF LINKS APPEARANCE IN THE BAYESIAN NETWORK FOR

RELATIONS OF DEPENDENCE OF UDP PARAMETERS OVER TCP
PARAMETERS

child\parent udp-hchk udp-h-l udp-h-dport udp-h-sport
tcp-h-uptr 0,49 - 2,86 -
tcp-h-win - - - -
tcp-h-cwr - - - -
tcp-h-ece 0,59 - 2,63 1,79
tcp-h-psh - 1,79 1,79 0,59
tcp-h-urg 1,02 - 1,57 4,11
tcp-h-ack - - - -
tcp-h-rst - - - 1,79
tcp-h-syn - - - -
tcp-h-fin - - - -
tcp-h-off - - - -

tcp-h-ackn - - - -
tcp-h-seq - - - -

tcp-h-dport - - - -
tcp-h-sport - - - -

• Hypothesis 5: Independence between TCP and
ICMP. Similarly, table VII and table ?? show that the
data of the experiment points out the independence
between the detection parameters of TCP and ICMP
protocols, in any way. There are not enough significant
links between the detection parameters, in any way.
Therefore, there are not variables of the TCP protocol
that depend on the variables of the ICMP protocol,
and vice versa. Hence, the hypothesis of independence
between TCP and ICMP is also proved.

• Hypothesis 6: Independence between UDP and
ICMP. Finally, in table VIII and table IX, the data of
the experiment points out the independence between
the detection parameters of UDP and ICMP protocols,
in anyway. There are not enough significant links



Table III
FREQUENCY OF LINKS APPEARANCE IN THE BAYESIAN NETWORK FOR RELATIONS OF DEPENDENCE OF IP PARAMETERS OVER TCP PARAMETERS

child\parent ip-h-dst ip-h-src ip-h-proto ip-h-tll ip-h-df ip-h-id ip-h-tl ip-h-tos ip-h-hl
tcp-h-uptr - - 15,61 - - - - - -
tcp-h-win 2,40 2,09 - 2,89 4,46 - 13,55 - -
tcp-h-cwr - 0,49 - - - 0,43 31,32 - -
tcp-h-ece - - 11,08 - - - - 2,33 -
tcp-h-psh - - 6,63 0,71 - - - 1,38 -
tcp-h-urg - - 12,43 - - - - - -
tcp-h-ack - - - - - - 2,17 - -
tcp-h-rst - - 1,31 1,08 1,92 - - - -
tcp-h-syn 0,71 - - - 1,79 - - - -
tcp-h-fin - - - 1,02 - - - - -
tcp-h-off - - - 1,98 - - 28,74 - -

tcp-h-ackn - - - - - - - - -
tcp-h-seq - - - - 1,74 - - - -

tcp-h-dport 3,84 1,08 - - - - 9,04 - -
tcp-h-sport 8,01 3,57 - - - - 8,40 - -

Table VII
FREQUENCY OF LINKS APPEARANCE IN THE BAYESIAN NETWORK FOR

RELATIONS OF DEPENDENCE OF ICMP PARAMETERS OVER TCP
PARAMETERS

child\parent icmp-hchk icmp-hcode icmp-htype
tcp-h-uptr - 2,86 -
tcp-h-win - - -
tcp-h-cwr - - -
tcp-h-ece - - -
tcp-h-psh - 0,59 -
tcp-h-urg - 3,52 -
tcp-h-ack - - -
tcp-h-rst - - -
tcp-h-syn - - -
tcp-h-fin - 0,49 -
tcp-h-off - - -

tcp-h-ackn - - -
tcp-h-seq - - -

tcp-h-dport - - -
tcp-h-sport - - -

between the detection parameters, in none of both ways.
Therefore, there are not variables of the UDP protocol
that depend on the variables of the ICMP protocol,
and vice versa. Hence, the hypothesis of independence
between UDP and ICMP is also verified.

Table VIII
FREQUENCY OF LINKS APPEARANCE IN THE BAYESIAN NETWORK FOR

RELATIONS OF DEPENDENCE OF ICMP PARAMETERS OVER UDP
PARAMETERS

child\parent icmp-h-chk icmp-h-code icmp-h-type
udp-h-chk - - -

udp-h-l - - -
udp-h-dport - - -
udp-h-sport - - -

The validity of the hypotheses 7 and 8 is already proved
by their set out. This is, the set of detection parameters
corresponding to the head fields of IP, ICMP, TCP and
UDP protocols is independent from the data fields of the
corresponding protocols, and vice versa. In the case of one

Table IX
FREQUENCY OF LINKS APPEARANCE IN THE BAYESIAN NETWORK FOR

RELATIONS OF DEPENDENCE OF UDP PARAMETERS OVER ICMP
PARAMETERS

child\parent udp-h-chk udp-h-l udp-h-dport udp-h-sport
icmp-h-chk - - - -
icmp-h-code - - - -
icmp-h-type - - - -

temporal step dynamic BN, the set of detection parameters
used in the static analysis methods are independent from
those used in the dynamic analysis methods, and vice versa.

Since the results confirm the hypothesis of dependence
and independence, the RFC specifications of each protocol
are ratified. Therefore, a knowledge representation model
based on the different Bayesian networks can be built,
decreasing in this way the complexity of the design of the
BN and minimising its training process.

V. CONCLUSION AND FUTURE LINES

As the use of Internet grows over all boundaries, the
number of menaces rises to become subject of concern and
increasing research. Within this scenario, Intrusion Detection
Systems have proven themselves as a real candidate to
separate real data from dangerous one by offering crucial
information to provide safer networks. Still, current solutions
concentrate only on well-known attacks (misuse) either on
unknown ones (anomaly).

It has been already demonstrated [1] that the use of
Bayesian networks to integrate anomaly and misuse de-
tection in a Intrusion Detection System is a suitable ar-
chitectural solution. Nevertheless, this Bayesian network-
based approach faces big computational costs during the
construction of the knowledge model. Within this paper, we
proposed the use of expert knowledge to minimise these
costs.

We have accurately studied how to create a model of
knowledge representation. First of all, we obtained a rep-



resentative data sample. Second, we defined how many
temporal steps we were going to use for our experiment.
Third, we established the hypothesis according to the expert
knowledge. Fourth, we planned the process of structural
learning and performed it. After this step, we obtained
statistical metrics from the partial Bayesian networks. These
partial fragments were unified and adapted before verifying
the hypotheses of dependence and independence. Finally, we
obtained the optimal structural definition of the knowledge
representation model on which we performed parametric
learning. According to this experiment, we have proved the
validity of the hypotheses and obtained the optimal BN for
Intrusion Detection Systems (IDS). This knowledge model
is currently being used as the expert system of our own IDS
architecture.

Future work will focus on further research on the use
of expert knowledge for Bayesian networks modelling over
different domains beyond the Intrusion Detection and the
creation of a formal metric. This metric will measure the
impact of the use of expert knowledge in the model creation
time and the final performance of a Bayesian network.
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